A HYBRID PROCESS OF BIOFILTRATION OF SECONDARY EFFLUENT FOLLOWED BY OZONATION AND SHORT SOIL AQUIFER TREATMENT FOR WATER REUSE

I. ZUCKER, H. MAMANE, H. CIKUREL, M. JEKEL, U. HÜBNER, D. AVISAR

Introduction:

- ✓ The reclamation process at the "Shafdan" includes 1) primary clarification; 2) activated sludge; and 3) tertiary soil aquifer treatment (SAT) with hydraulic retention times (HRTs) of a few month, which lead to the following malfunctions:
 - \checkmark Increasing hydraulic load with strongly required HRT for DOC removal.

Tel Aviv University

- ✓ Long HRTs with high oxygen demand along the SAT result in anoxic conditions and mobilization of dissolved manganese from soil.
- \checkmark The occurrence of persistent trace organic compounds (TrOCs) in reclaimed water.

Experimental:

Effluent

Biofilter

- ✓ The pilot system included biologically active high-rate filtration unit, ozonation unit and short SAT facility (figure 1)
- ✓ <u>Biofiltration unit</u>: Included coagulation/flocculation with 5 min HRT and addition of hydrogen peroxide to provide oxygen for microbial processes and it was operated in a modified active dual media filter combined infiltration and backwash cycle.
- ✓ Ozonation unit: Ozone was produced from pure oxygen and operated in continuous mode.

Effluent

Biofilter

Ozonation

Objectives of this research:

This research focused on the combination of biofiltration prior and following ozonation as alternative treatment in order to:

✓ Reduce footprint of the existing SAT; Eliminate residual TrOCs; Minimize Mn²⁺ mobilization

- ✓ <u>Short SAT facility</u>: A recharge borehole (RBH) and observation well in a depth of 27.5 m at a distance of 7.3 m downstream Analytical methods:
- \checkmark The target compounds of TrOC were detected and quantified by HPLC
- ✓ TOC, DOC, Nitrogen compounds and bromate were determined by TOC analyzer, spectrophotometer and ion chromatography.

Results and Discussion:

- ✓ Biofiltration as pretreatment for short SAT showed complete nitrification with efficient removal of NH₄⁺ and NO₂⁻ (Figure 2).
- ✓ Biofiltration reduce DOC concentration in about 17-22% in the secondary effluent (Figure 3).
- ✓ Ozonation increased NO₃-N concentration (Figure 2b).
- ✓ Efficient reduction of UVA (60%) observed by ozone (Figure 3b).
- ✓ Biofiltration reduce the concentrations of ACS and IOP from the TrOCs group by approximately 60% and 30%, respectively but not significantly (Figure 4).

Conclusions:

✓ Incomplete nitrification during secondary treatment lead to clogging in the reclaimed water.

✓ As a result of the pretreatment of biofiltration and ozonation the oxygen demand in the process was reduced and additional DO during SAT was succeeded.

✓ Improvement of the reclaimed water was achieved